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SUM MARY 
A study is reported on the possibility of improving the speed of convergence of existing numerical 
programmes for the simulation of flow in combustion chambers by applying the multigrid method to  the 
pressure correction phase only. A version of the multigrid algorithm is introduced for this purpose which 
achieves a 1 : 10 residual reduction in a single V(1, 1) cycle. The overall decrease in computation time with 
respect to an industry-standard SIMPLE algorithm with single-grid pressure correction ranges from four 
to five times for SIMPLE itself and several other well-known algorithms to six times for a newly developed 
pressure correction strategy we call difference operator triangularization (DOT). 
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1.  INTRODUCTION 

Multigrid is today the most promising technique for the fast numerical solution of partial 
differential equations.’ Nevertheless, at the industrial application level the majority of the existing 
computer codes for the calculation of quasi-incompressible internal flows (e.g. in combustion 
chambers) are still based on single-grid iterative algorithms. These codes have often been 
developed to a high degree of comple~ i ty ,~ -~  with the inclusion of the effects of chemical 
reactions, turbulence (acting on both the velocity field and the chemical reactions themselves) 
and multiple phases (liquid fuel drops in a gas). The need therefore exists for an incremental 
multigrid modification capable of achieving a worthwhile reduction in the computation time of 
such programmes, even if not one as large as could be provided by a multigrid method designed 
from scratch, while preserving most of the already existing code. 

Internal combustion flows are quasi-incompressible in the sense that although important 
density modifications take place, the Mach number is usually small. Therefore the com- 
pressible form of the Navier-Stokes equations must be assumed as the fundamental model 
of such flows, but  the iterative algorithms used for their numerical solution closely resemble 
those designed for incompressible flow. Among these algorithms, very well known and probably 
the most widespread in industry is the SIMPLE method of Patankar and Spalding,’ either in its 
original form or in one of its variants (SIMPLER, SIMPLEC). A recent competitor is PIS0,6 
which may be seen as an evolution of the old MAC of Harlow and Welch’ and, like MAC, was 
born as a method for unsteady flows and later adapted to steady flows by a false transient 
approach . 
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Many recent papers deal with a multigrid modification of one or other of these algorithms; 
for instance, Miller and Schmidt' do so for SIMPLEC, while Shyy et aL9 propose and compare 
multigrid forms of the SIMPLE, SIMPLEC and P IS0  methods for the solution of the 
Navier-Stokes equations. 

In all these papers a complete, already functional, iterative algorithm is encased in a multigrid 
'outer box' taking the role of the 'smoother' (that block of code in a multigrid strategy which 
has the purpose of damping the small-wavelength part of the error spectrum). While this 
approach certainly does improve the convergence rate of the starting algorithm, the iteration 
block borrowed from a previous method is unlikely to be competitive against a smoother 
expressly designed for its purpose, e.g. DGS." On the other hand, this approach requires a major 
rewriting of the computer programme. 

Nearly all the well-established iterative algorithms for incompressible flow distinguish a stage 
in which the fluid velocity is updated at constant pressure from one in which a pressure correction 
is applied. Whereas the greatest part of the programming effort is required by the algorithm 
that deals with velocity and other transported quantities (chemical species, thermal energy, 
turbulence energy or other parameters involved in the turbulence model), the critical step as to 
computation time generally turns out to be the pressure correction. Starting from this observa- 
tion, we began to study the possibility of applying a multigrid algorithm to the pressure 
correction phase only. The results described below show the potential of improving by several 
times the computational speed of an existing programme while modifying only a small fraction 
of the code. 

2. OVERVIEW OF A FEW STANDARD SINGLE-GRID ITERATION SCHEMES 

We shall consider some very-well-known iterative algorithms for the solution of the steady 
incompressible (or compressible at low Mach number) 2D Navier-Stokes equations and apply 
them for testing purposes to one and the same discretization of the momentum and continuity 
equations. Since we are mainly interested in comparing computation times, the same discretiza- 
tion as in the original SIMPLE scheme is adopted, i.e. first-order upwind convective terms and 
central diffusive terms on a staggered square grid. The adoption of more sophisticated high-order 
discretizations such as QUICK' and a possibly unstaggered and curvilinear grid, one or all of 
which can be foreseen to be often present in modern applications, is not likely to upset the 
relative order of magnitude of the computation times in which we are interested here. On the 
same grounds, we shall conduct our comparison using a simple constant-total-enthalpy condition 
as the energy equation in the examples below, so that only the continuity and momentum 
differential equations need be solved for the unknowns velocity and pressure. The results as to 
relative computation time are likely to remain at least qualitatively valid with more complex 
and general models. 

2. I .  The discretized governing equations 

In the staggered grid we denote by ( i , j )  the points where the pressure is sampled on the ith 
row and jth column and by ( i  + i,j) and (i , j  + f) the points where the u- and v-components of 
velocity are sampled. 

The discretized form of the Navier-Stokes equations (u- and u-momentum equations and 
continuity equation respectively) is represented as 
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where 

and 

a!:j+l/2 = -$[(pu)i,j + I(p')i.jll - l /Reh, 

b!y;tl/2 = -t[(pu)i-l/2,jt1/2 + ~ ( ~ u ) i - l / Z . j + l / 2 ~ l  - 

diyj+1/2 = f[(pU)i+l/Z,j+l/Z - I (Pu) i+1 /2 . j t 1 /211  - 'IRe,, 
e!:]+ 1/2 = f[(p')i,j+ 1 - I(Pv)i,j+ 111 - 'IRe,, 
c g +  l / Z  = 4al:jt l / Z  + b!:)+ l/Z + 4:;t l / Z  + el:]+ 1/2). 

The velocity components L J ~ , ~ ,  u i t  l / 2 . j - l / 2  and u ~ + ~ ~ ~ . ~ + ~ / ~  necessary for the calculation 
of the coefficients of the u-momentum equation and q j ,  u i + l , j ,  ui-1/2.j+1/2 and U i t  1 / 2 . j + 1 / 2  

necessary for the calculation of the coefficients of the u-momentum equation are obtained by 
linear interpolation between the two nearest grid values. The pressures pi+ l i z , j +  

and pi- 1 / 2 , j +  necessary for the calculation of the coefficients of the u- and u-momentum 
equations are obtained by a bilinear interpolation of the four nearest grid values. The density, 
a known function of the pressure and velocity modulus through the constant-total-enthalpy 
condition, has been determined at  every required point only after interpolating, where necessary, 
the pressure and velocity. Re,, denotes the cell Reynolds number referred to the constant 
discretization step h. 

pi+ l i2 . j -  

2.2. The velocity predictor step 

All the methods discussed below first derive tentative velocity increments 6u and 6 u  by a single 
step of one amongst many possible iterative matrix inversion schemes (Gauss-Seidel, line 
relaxation, ADI, incomplete LU factorization, etc.) applied in turn to each of equations (1) and 
(2) (and, had the model included any, to all other transport equations) with the pressure 
unchanged and then add a correction by modifying the pressure by an amount 6 p  and the 
velocity components by amounts 6u' and Su' in a coupled manner and imposing the satisfaction 
of the continuity equation. 
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The type of coupling introduced between the velocity and pressure corrections during the 
second stage is what makes the difference between the various algorithms. 

We can describe in a unified manner the solution of the momentum equations (1) and (2) with 
a given pressure field, necessary to obtain a prediction of the velocity field, because this step is 
common to all the algorithms of solution of the Navier-Stokes equations discussed in this work. 
Subsequently we shall describe the algorithm adopted for the correction of the flow field through 
the continuity equation in each particular method. 

For the sake of homogeneity of presentation we shall adopt a linearized delta form in which 
the object of an interation is the calculation of a correction to the main unknowns (velocity and 
pressure) from the approximate solution of a set of linearized equations. 

The linearized equations (1) and (2) may in all cases be written as 

a?! 112. jsui t 1/2 .  j- 1 + bl"! 1/2.  j6ui- 1/2 .  j + (47 112, j + a P U i  + 1/2 ,  j 

(4) 

( 5 )  

- - t!"' + dlu!1/2,js~i+3/2.j + elu!1/2,jhUit1/2,jt1 - i+l/Z,j? 

al:j+1/280i.j-l/Z + bl:J+L/26ui-l.j+1/2 + (clf):+1/2 + a)bui.j+1/2 

+ d ~ ~ ~ + l / 2 6 U i + l , j t l / 2  + elyj+l/26ui,j+3/2 = - f ! ; j t 1 / 2 ?  

where the right-hand sides $2 l i z , j  and f i 3 +  112 denote the residuals of equations (1) and (2). 
The added coefficient a may be equivalently interpreted either as a false transient term 

simulating the effect of time evolution or as a relaxation parameter intended to give an SOR-like 
character to the scheme and is commonly used as a 'turning knob' to optimize the convergence 
rate of each method. 

2.3. The SIMPLE method 

In the pressure correction stage of the SIMPLE algorithm the two required relations between 
the corrections bu' and bv' of the velocity components and the pressure correction 6p are derived 
by neglecting in the momentum equations (4) and ( 5 )  the four satellite terms with coefficients a, 
b, d and e and assuming that the prediction values have already zeroed the residuals of these 
equations. (This is not exactly true, because only a single iteration of matrix inversion has been 
performed upon a matrix that represents an approximate linearized version of the problem.) 
The relations are the following: 

(6) 

Substituting equations (6)  and (7) into the discretized form of the continuity equation (3) gives 

~ ; ~ ] 6 p ~ , ~ - ,  + blp,!6pi_l,j + clpj6pi.j + djp,!6pi,j-l + eif,!bpi,j+l = -6') l . J ?  (8) 

where 
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On the right-hand side of equation (8) tj!) denotes the residual of equation (3) as evaluated after 
the predictor step. 

One iteration of the SIMPLE method is composed of a velocity prediction as described in 
Section 2.2 and a pressure correction obtained from an approximate solution of equation (8) 
(generally, one or more iterations of one of the already-mentioned matrix inversion algorithms: 
point and line relaxation, ADI, ILU, etc.). Once the pressure correction 6 p  has been calculated, 
the pressure is updated as 

P = P + a,@, 

where we have introduced a second relaxation parameter LY, for the pressure field, which may 
optionally be used to tune up the convergence rate. 

2.4. The MAC method 

The MAC and PISO methods were initially devised for the unsteady Navier-Stokes equations. 
Afterwards they have been applied to stationary problems using a false transient approach. 

MAC’S velocity prediction step is indistinguishable from that of SIMPLE, with the reciprocal 
of the false transient time step Ar taking the place of the relaxation parameter LY in equations 
(4) and (5 ) ,  but in the pressure correction stage a Poisson equation takes the place of equation 
(8). For reasons related to the unsteady origin of the algorithm, which we do not repeat here, 
the velocity correction is derived from a potential cp as 

6v‘ = -vq, (9) 

where 6v’ denotes the correction of velocity in vectorial form, with components (6u’, 6u’). The 
potential cp is directly proportional to the pressure correction 6 p :  

with the same c1 that appears as a relaxation parameter in equations (4) and (5). 
In a discretized form relation (9) becomes 

hsul.j+ 112 = - (Pi . j+  t - q i . j X  h 6 4 + l / z , j =  - ( V i + l . j - V i , j ) .  

Together with the continuity equation (3), it yields the following discrete Poisson equation: 

with t!:) denoting as before the residual of equation (3) after the predictor step. 

2.5. The PISO method 

Of the PISO method we have tested the incompressible form only. As its performance in 
connection with multigrid turned out inferior to that of the other methods, it has been deemed 
unnecessary to perform our tests in the quasi-incompressible case. 

The PISO algorithm, after the common predictor step performed according to Section 2.2, 
provides two subsequent corrector steps for pressure and velocity. We shall denote the velocity 
and pressure corrections corresponding to each step by 6v’, 6p’ and 6v”, 6p” .  
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Introducing the notation 

No(ui + 1 / 2 ,  j )  = a!“! 1 /2. j u i  + 1 /2. j - 1 + by! 1 /2, j ui - 1 12. j + dl“! 1 /2,  j u i  + 3/2, j + ei“! 1 /Z ,  j ui + 1 12, j + 1 9  

No(vi ,  j +  1/21 = a!:]+ l / Z U i ,  j -  1 / 2  + bly)+ l / 2 u i  - 1 ,  j +  112 + d ! y ] +  112 u i +  1, j +  1/2  + e i ,  j +  112 u i ,  j +  312 3 
(0) 

we can define N,(v) as the vector whose components are and N , , ( U , , ~ + ~ / ~ ) .  As a 
consequence of grid staggering, the two components do not refer to the same spatial point but 
rather each to the point where the corresponding velocity component is evaluated. 

Denoting for the sake of conciseness the discretized forms of the operators V and div by the 
same symbol as their continuous counterparts, even though the two components are not 
evaluated at the same grid point, we may describe the PIS0 algorithm as follows. 

Predictor step 

(a + c)6v = -[cv + N,(v) + Vp]. 

This is, apart from notation, the same as the general predictor step of Section 2.2 when Jacobi 
point relaxation is chosen as the approximate matrix inversion algorithm. Notice that the symbol 
c stands for cjT1112, j  when applied to the u-component and for c):]+,/~ when applied to the 
u-component of velocity. 

First corrector step 

(a + c)6v’ = -VSp’, 

where 6p‘ is obtained from the solution of the difference equation 

div [ (a + c)-’V6p’] = div (v + 6v). (13) 

This is the same as the corrector step of SIMPLE. In the time-dependent form of PIS0 it is 
required that equation (13) be solved with good precision, but in the false transient form a 
compromise must be sought in order to optimize the time of computation. 

Second corrector step 

(a + c)6v” = -No(6v‘) - Vdp“, 

where 6p“ is obtained from the solution of the second elliptic equation 

div [(a + c)- ‘Vdp’’] = -div [ (a + c)- ‘NO(6v’)]. (15) 

Finally, once the second pressure correction 6p” has been determined, the second velocity 
correction is given by 

6v” = - { ( a  + C)-1[NO(6V’) + Vbp”]}. (16) 

3. MULTIGRID 

As stated in Section 1, the purpose of this work is to test a multigrid modification of a few 
standard algorithms (and of a new one which we shall introduce below) in which the multigrid 
technique is applied in black-box style to the pressure correction phase only. In this way all 
that is needed is the multigrid solution of a single scalar elliptic equation, which is a well-studied 
problem and can be obtained with high efficiency.’ 
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The multigrid method we use is quite standard but does contain some points that may deserve 
discussion, particularly in the restriction procedure and in the treatment of boundary conditions. 
We shall now describe this method with reference to the Poisson equation (as is relevant e.g. to 
MAC); the extension to a variable-diffusivity-type elliptic equation (as is encountered e.g. in 
connection with SIMPLE) is straightforward. 

Let us consider the Poisson equation 

V2q = b, 

with the Neumann condition &plan = 0 on part of the boundary of a rectangular domain and 
the Dirichlet condition q = constant on the rest. 

The discretized form of equation (17) is 

where bi.j = h2b and h is the discretization step. 
In a certain grid sequence of increasing mesh size we shall indicate with the superscript 'f' 

(fine) the functions computed in turn on any given grid of the domain and with the superscript 
'c' (coarse) the functions computed on the next coarser grid of the sequence. 
A V(1, 1) multigrid cycle' is adopted in which the coarsest grid encompasses two meshes along 

the shorter side of the rectangular domain. Each step in the multigrid cycle is composed of three 
operations: smoothing of the error, i.e. damping of the spectral components that on any given 
grid have a wavelength comparable with the grid size; a fine-to-coarse transfer operation, also 
called restriction; and a coarse-to-fine interpolation of correction, also called prolongation. 

We shall now describe these three operations in detail. 

3.1. Smoothing and prolongation 

The smoothing algorithm we use is red-black point relaxation. This is very simple, its 
smoothing properties are as good as any other's for the Poisson equation or a not too unbalanced 
variable-diffusivity equation, and in addition it simplifies the operation of prolongation. 

In fact, in the coarse-to-fine grid transfer one must correct the values of the current 
approximation on the fine grid with the ones obtained on the coarse grid by a certain operation 
of interpolation. Since the red-black relaxation algorithm is such that values of the potential at 
the 'red' points can be fully recovered from a knowledge of the 'black' only and vice versa, it 
is sufficient to correct the fine-grid solution (by a linear interpolation of the difference between 
the coarse-grid and fine-grid values) at the odd-numbered points only, because the following 
step of the smoother will determine the even-numbered ones completely. 

The ordinary smoothing factor of red-black relaxation is of the order of 1 :3  in a V(1, 1) 
configuration, meaning that the error norm is reduced by a factor of approximately 3 for each 
complete multigrid cycle, which is already quite good. However, we have found that a simple 
modification of the restriction operation, giving a bias to the starting values transferred to the 
coarse grid (as we shall describe in greater detail below), changes this factor from 1 : 3 to better 
than 1 : 10, at least with Dirichlet boundary conditions. 

3.2. Restrict ion 

Let us call h' the mesh size of the fine grid and h' the mesh size of the coarse grid (here 
h' = hc/2). The multigrid philosophy approximates equation (18) on the fine grid by a similar 
equation written on the coarse grid with a suitably modified right-hand side. The restriction 
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operation consists of calculating the values of both the unknown cp and the right-hand side b 
on the coarse mesh so as to verify the two conditions that the coarse-grid equations be a discrete 
approximation of the same differential problem as the fine-grid equations are and that the coarse 
difference equations be exactly satisfied when the fine ones are. This can be done in more than 
one way. 

The simplest approach, to copy the fine-grid values of cp on to the corresponding coarse-grid 
points and to put the RHS b' equal to the sum of the LHS calculated on the current coarse-grid 
values and the fine-grid residual at the same point (multiplied by a factor depending on the 
different discretization steps), is usually discarded in favour of the use of weighted averages of 
the fine-grid residuals at a number of neighbouring points, because pointwise transfer from the 
fine to the coarse grid causes a possibly harmful decoupling between the coarse-grid solution 
and the residuals at the fine-grid points that have no correspondent on the coarse grid. However, 
when the smoother is so efficient as to produce an error reduction by a factor of 5 in a V(1, 1) 
cycle, weighted averaging of the residuals may draw a significant tribute in terms of computation 
time. Fortunately, red-black relaxation makes this averaging unnecessary: since at any given 
iteration step either the 'red' or the 'black' residuals are identically zero, considering just a single 
non-zero residual is equivalent to averaging five neighbours. Doing so yields an overall 1 : 3 
error reduction per multigrid cycle for a Poisson equation with Dirichlet boundary conditions. 
Improvements are possible, however. 

The improvement that we have been using for some time, but which we present for the first 
time here, stems from the observation that, even when the values of the unknown and the 
residuals are transferred pointwise from one to another grid to minimize the time of computation, 
the simultaneous availability of value and residual can be exploited for a better extrapolation 
of the unknown to the coarser grid. In particular, adding to the local value of the unknown the 
residual weighted by a suitable factor is equivalent to an additional relaxation step, which can 
be gained at the expense of a single multiplication and addition per coarse-grid point. By trial 
and error we have determined that the optimum weighting factor for the Poisson equation is 
two. The following restriction algorithm results. 

For each coarse-grid point ( i ,  j ) :  

1. Compute the fine-grid residual rf = b5i.2j - L q i i , 2 j .  ( L  is the discretized Laplace operator, 
i.e. the LHS. of equation (18)) 

2. Define the right-hand side on the coarse grid as bf,j = L'C~: , , ,~  + 2r'. (This is the standard 
way of proceeding, except that the coarse Laplace operator is applied to the fine-grid values 
at positions 2i + 2, 2i - 2, 2j + 2 and 2j - 2, because these have not been copied to the 
coarse grid.) 

3. Perform the restriction of cp-values by the formula cp;,j = c p : i , 2 j  + 2r' (rather than just 
copying as cp:, = cp:,, z j ) .  

This little modification, which corrects the initial coarse-grid values of the potential function 
by the fine-grid residuals multiplied by two, changes the error reduction per cycle of the V(1, 1) 
multigrid algorithm with red-black smoothing from 1 : 3 to better than 1 : 10, at least when 
Dirichlet boundary conditions are imposed. 

3.3. Boundary conditions 

Dirichlet boundary conditions are straightforward. For the pressure correction equation, 
however, be i t  of the Poisson or the variable-diffusivity type, we also need to impose Neumann 
boundary conditions on the parts of the boundary where the normal velocity is given. The 
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implementation of Neumann boundary conditions strongly interacts with the multigrid algo- 
rithm and, if overlooked, this interaction is apt to slow down the speed of convergence by orders 
of magnitude. Once again restriction is the critical step. 

Let us consider the scheme of Figure 1, which represents the grid points involved in the 
computation of the Neumann boundary condition. Dots and crosses distiguish the ‘red’ and 
‘black’ points respectively; we recall that at any particular iteration step either the ‘red’ or the 
‘black’ residuals are identically zero. On the finest grid the boundary passes just in the middle 
between two adjacent rows of grid points, so that the Neumann boundary condition may be 
written with second-order accuracy as 

where bo, = hb. 
Since the Neumann boundary condition involves the derivative of the unknown function, it 

must be treated just as an additional differential equation and its restriction to coarser and 
coarser grids involves the calculation of a new right-hand-side b:, under the same general rules 
that apply to internal points. Namely, bb,j must equal the sum of the LHS of equation (19) 
calculated on the coarser grid and the current residual of the same equation on the finer grid 
multiplied by a suitable step change factor. However, even though pointwise restriction turns 

0 
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0 - - -  

0, i 

X 

0 

boundary 
X 0 
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1, j+1 
X 

0 

X 

X 0 

Figure 1 .  Position of the grid points involved in the computation of the Neumann boundary condition 
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out satisfactory for the internal points, doing so for the Neumann boundary conditions 
substantially deteriorates the rate of convergence. The generally advised remedy,' to use a 
weighted average of neighbouring residuals, works for boundary points as well. However, 
account must be taken of the fact that in red-black relaxation residuals of one colour are 
identically zero when those of the other are not; therefore, with reference to Figure 1, the closest 
neighbours whose residuals can be non-trivially combined with that of point (0,j) are points 
(1,j + 1) and (1,j  - 1). (Considering the residuals of points in column 1 is also suggested by the 
fact that the new fake boundary corresponding to the coarser grid passes through these points.) 
On choosing the weights by trial and error, we have arrived at the following boundary restriction 
algorithm. 

For every boundary point where Neumann conditions are applied: 

1. Compute the fine-grid residuals rL,j (from equation (19)), r ; , j + l  and r ; , j - ,  (from equation 

2. Define eo , j  = 0.5r',.j + 0.25(r:,j+1 + r l , j - l ) .  
3 .  Define the right-hand side for the boundary condition on the coarse grid as b;,j,2 = 

f 
( 18)). 

cp;, - cp;, + 4e0, and the extrapolated coarse-grid value as &, j,2 = cp;, + 4e0. j .  

Attention must also be paid to the corners of the rectangular computational box if Neumann 
conditions are imposed along both sides that meet at the corner. 

The algorithm achieves a 1 : 5 error reduction ratio per V ( 1 , l )  multigrid cycle with mixed 
Neumann and Dirichlet boundary conditions. Although not as good as with Dirichlet conditions 
alone, this performance is quite satisfactory for all applications. The extension from the Poisson 
to the variable-diffusivity equation is straightforward and achieves a similar convergence rate. 

3.4. Application of the multigrid technique to the pressure correction stage of Navier-Stokes 
computations 

The multigrid technique just described has been used in this work for the iterative solution 
of the pressure correction equation. 

The SIMPLE and P IS0  methods are characterized by elliptic equations with non-constant 
coefficients, while the MAC method and the new method DOT, which we shall introduce below, 
are characterized by Poisson equations. In each of these methods the standard pressure 
correction step (effected by one or more iterations of either point or line relaxation) has 
been replaced by one V(1, 1) multigrid cycle on the relevant equation (the pressure correction 
equation (8) of the SIMPLE method, the two elliptic equations (13) and (15) of the first and 
second corrector steps of the PISO method, the Poisson equations (10) of the MAC method 
and (26) of the DOT method), without changing any other detail of the algorithm or its 
programming. The results obtained with the various algorithms will be described and compared 
in Section 5. 

4. DGS AND THE NEW METHOD DOT 

The DGS (distributive Gauss-Seidel) method was introduced by Brandt and Dinar l o  for 
the simultaneous solution of the momentum and continuity equations by multigrid. Not 
surprisingly given its origin, we have found this method unsuitable for a mixed setting in which 
multigrid is applied to the pressure correction step only; nevertheless, the philosophy of DGS 
suggested to us a modification that works, which we have called DOT (difference operator 
triangularization). 
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At the basis of DGS there is the approximate triangularization of an operatorial form of the 
steady Navier-Stokes differential equations. If we introduce the advection-diffusion operator Q as 

1 a a 
Re ax ay Q = ~ V2 - u - - y -, 

the incompressible Navier-Stokes equations can be written in matrix form as 

[; :g[i]=E] 
and their linearized &form as 

If we now work as if the operators Q and a/ax, d/ay commuted with each other (this is where 
an approximation is made, because Q involves non-constant coefficients), we can triangularize 
the above matrix by, for instance, Gauss elimination. The first and second rows of equation (21) 
thus give 

6~ = Q - l(t'u' + d6p/dx), 

which, when substituted into the third, yield 

6~ = Q-l(t'" + d6p/Jy), 

If we let operators commute, we may now introduce a potential cp = -Q-  '6p and equation (22) 
thus becomes 

(23) VZcp = p) 

where P) represents the residual of the continuity equation after the predicted values of velocity, 
u + Q-'t(") and u + Q-'t("), have been inserted. Once the potential has been calculated from 
the solution of the Poisson equation (23), the corrected values of the velocity components become 
u = u - cpx and v = u - cpy and the pressure correction becomes 

6 p  = - Q q .  (24) 

As may be seen, Brandt and Dinar's DGS, although derived from a quite different line of 
reasoning, is not in practice very different from the other methods we have presented, except in 
the pressure correction phase where formula (24) is adopted. The critical step is, however, the 
inversion of the diffusion-advection operator Q in the velocity prediction step, which must be 
fairly accurate for equation (24) to be consistent. DGS does work when multigrid is used for 
this purpose, but turned out unsatisfactory in our tests where we wanted to apply a standard 
method, say line relaxation, to the momentum equation (i.e. to the inversion of Q )  and multigrid 
to the Poisson equation (23) only. 

The failure of DGS to provide satisfactory convergence in a mixed setting where multigrid is 
applied to the pressure correction alone may be ascribed to inconsistency between the loose 
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approximation of the differential operator Q-'  provided by a single iteration of point or line 
relaxation and the full operator Q used in equation (24). We may notice, however, that any such 
relaxation algorithm involves the exact inversion of an approximate difference operator obtained 
by deleting from the discretization of Q one or more of the five points in its difference stencil 
(four in Jacobi point relaxation, two in Gauss-Seidel point relaxation or Jacobi line relaxation, 
one in Gauss-Seidel line relaxation). 

If we call Qd the difference operator corresponding to any particular approximate inversion 
method that is chosen for the momentum equation, we may rewrite equation (21) as 

and, correctly this time, assume that we are able to calculate Q;' quickly and exactly. 

is now replaced by 
All the previous line of reasoning applies unchanged, but the pressure correction formula (24) 

S p =  -Q d (P, (26) 
where the approximate difference operator Qd takes the place of the differential operator Q. The 
result is what we call DOT (difference operator triangularization). Notice that, as we set up as 
our main requirement, the already existing velocity prediction algorithm need not be modified, 
all changes being limited to the pressure correction stage. 

The main difference between our proposed method DOT and Brandt and Dinar's DGS is 
that they, not distinguishing between Qd and Q, obtain a method that is only suitable in 
conjunction with a multigrid algorithm applied to both the momentum and pressure correction 
equations. In contrast, in our method the multigrid pressure correction can be coupled to any 
one of several operators usable in the iterative process for the momentum equations. 

5. RESULTS 

This section shows the results regarding time and number of iterations needed to reach a prefixed 
level of convergence for the SIMPLE method with and without application of multigrid to the 
pressure correction equation and for the MAC, PIS0  and DOT methods with application of 
multigrid to the pressure correction equation. 

The test problem is a very idealized combustion chamber: a rectangular cell of 3 :  1 aspect 
ratio with a certain number of inflows and an outflow. While on the solid walls of the chamber 
both components of velocity are zero, there are several possibilities for the boundary conditions 
to be given at the inflow and outflow sections. 

In general we are allowed two conditions for the three unknowns u, ti and p at the inlet and 
outlet. At the inlet we have given both components of velocity, specifically zero tangential 
component and constant normal component; at the outlet we have given a constant value of 
the pressure and zero tangential velocity. We might alternatively have given the pressure at the 
inlet and the normal velocity at the outlet or the two pressures with little effort. At any rate, 
giving a velocity condition allows us to approximately fix the flow rate, and the pressure at the 
outlet (which occupies the whole of a shorter side of the rectangle) is quite close to the pressure 
that prevails throughout most of the cell. 

The same discretization of the test problem is used for all methods, so that the final numerical 
results at convergence are always exactly the same: a 48 x 16 uniform staggered grid with the 
boundary of the rectangle passing between two adjacent rows of pressure points. 
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Two geometries have been chosen for the tests. In both the outflow is located on a shorter 
side of the rectangle, while two different possibilities are considered for the inflow: (i) a single 
inlet occupying the first six grid points of one longer side; (ii) two inlets located on opposite 
longer sides of the domain, the first involving the grid points from the fifth to the ninth and the 
second from the 20th to the 23rd, with numeration starting from the side opposite the outlet. 

With all methods the iteration was stopped and the computation time recorded when the sum 
of the absolute values of the continuity and momentum equation residuals (which were calculated 
in the same way in all methods) had been reduced by four orders of magnitude with respect to 
its starting value. 

= 1.4) have been 
defined, the characteristics of the flow are completely determined by two dimensionless numbers, 
which may be defined as a Reynolds number and a Mach number in terms of suitable velocity, 
pressure and enthalpy boundary conditions. 

Let H ,  denote the given constant total enthalpy of the flow and pout the given pressure at the 
outlet. A reference density can be defined as the stagnation density that would be found at 
enthalpy H ,  and pressure pout, i.e. by the formula 

Once the geometry and the equation of state (that of a perfect gas with 

As a reference length L, we take the width of the rectangle, while our reference velocity L’, is the 
given inlet velocity multiplied by the ratio between inlet and outlet width (i.e. the velocity that 
would prevail at the outlet if the flow were uniform and incompressible). 

In terms of the above quantities the Reynolds and Mach numbers we have used to parametrize 
the test results are 

The ranges considered are 0 < M < 0.3 (the limit for the application of some of the methods 
described) and 0 < Re < 100 (the point where the recirculation cell that forms inside the domain 
extends all the way to the outlet, making the zero-tangent-velocity outlet condition unrealistic). 
Concerning these limits, it is to be observed that M = 0.3 (when the Mach number is defined 
by equation (29)) is about twice the maximum Mach number that is likely to be encountered in 
a real combustion chamber; Re = 100, despite looking desperately low with respect to the 
physical Reynolds number at which a combustion chamber operates, is quite realistic as a value 
of the numerical Reynolds number constructed with the eddy viscosity of any turbulence model 
that the actual modelling of a combustion chamber might use. 

Figures 2-5 show the streamlines and the pressure field for the two geometrical configurations 
considered, with Reynolds number 100 and Mach number 0.2. Notice that, given the particular 
non-dimensionalization we have chosen for the pressure, the pressure values in Figures 3-5 may 
also be read (apart from a factor of y) as the inverse square of the local Mach number in the 
chamber. 

5.1. The SIMPLE method 

Of SIMPLE we have tested five versions, differing in the iterative methods applied to the 
momentum and pressure correction equations and in the way a relaxation parameter is 
introduced into the momentum equations. 
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Figure 2. Streamlines for the flow in a single-inlet geometry at a Reynolds number of 100 and a Mach number of 0.2 

Figure 3. Contour map of non-dimensional pressure for the flow in a single-inlet geometry at  a Reynolds number of 
100 and a Mach number of 0.2 
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Figure 4. Streamlines for the flow in a double-inlet geometry at a Reynolds number of 100 and a Mach number of 0.2 

A. 

B. 

Line relaxation is applied to the momentum equation and point Gauss-Seidel relaxation 
to the pressure correction equation. The relaxation parameter LY as shown in equations (4) 
and (5) is chosen so as to minimize the computation time. 
Same as A, but for a different choice of the relaxation parameter. The a that appears in 
equations (4) and ( 5 )  is set to zero and instead the increments Su and Su are only partially 
summed to the current velocity, as u = u + a6u and u = u + adu. The value of LY is again 
optimized by trial and error. 
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Figure 5 .  Contour map of non-dimensional pressure for the flow in a double-inlet geometry at a Reynolds number of 
100 and a Mach number of 0.2 

C.  Line relaxation is used for both the momentum and pressure correction equations, with 

D. Line relaxation is used for the momentum equations and multigrid (as described in Section 

E. Point Gauss-Seidel is used for the momentum equations and multigrid for the pressure 

Among the first three versions, all of which do not use multigrid, A turned out the fastest, 
then C and finally B. It is therefore more convenient to use the form of relaxation parameter 
indicated in equations (4) and ( 5 )  rather than a partialization of the velocity increments, and 
subordinately to use point rather than line relaxation for the pressure correction equation (line 
relaxation is  preferable for the momentum equations when multigrid is not used). The time to 
convergence for A is about 15% lower than for C and 30% lower than for B. 

Version E, which uses multigrid, is the fastest, as will appear from the detailed results given 
below together with those of other methods. 

Version D, in which the multigrid pressure correction technique is coupled to a line relaxation 
method for the momentum equations, does not converge for any values of the pressure and 
velocity relaxation parameters. 

the relaxation parameter as in A. 

3) for the pressure correction equation. 

correction equation. 

5.2. A comparison among SIMPLE, MAC, PISO and DOT in incompressiblejow 

Tables I and I1 report the time and number of iterations to convergence (defined as the point 
where the sum of the absolute values of the residuals of all equations has decreased by a factor 
of with respect to its initial value) for the best single-grid SIMPLE and the four methods 
SIMPLE, MAC, PISO and DOT with multigrid pressure correction. We recall that all these 

Table I .  Time to convergence for the case of incompressible flow in a single-inlet geometry 

SIMPLE SIMPLE + MG MAC + MG PISO + MG DOT + MG 
Reynolds 
number Time Time Ratio Time Ratio Time Ratio Time Ratio 

30 453"  1'24" 3.5 5 4  5.4 1'15" 3.9 38" 1.7 
100 7'2 1 " 1'15" 5.9 1 ' 1 0  6.3 1'49" 4.0 51" 8.6 
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Table 11. Number of iterations to convergence for the case of incompressible flow in a single-inlet 
geometry 

Reynolds 
number SIMPLE SIMPLE + M G  MAC + M G  PISO + M G  DOT + MG 

30 317 110 
100 477 98 

45 28 28 
57 41 38 

methods share the same velocity prediction step, so that the only actual difference is in how the 
pressure correction is applied. 

The relaxation parameters LY and ctP (where applicable) have been separately optimized and 
the best result for each method is reported. The optimum relaxation parameters at a Reynolds 
number of 30 turned out to be M = 0 and up = 1 (no over- or  underrelaxation at all) for SIMPLE, 
2 = 0.15 and a,, = 0.80 for the SIMPLE + (MG), a = 1.00 for MAC + MG, LY = 0.29 for 
PISO + MG and LY = 0.35 for DOT + MG. At a Reynolds number of 100 the optimum values 
of the relaxation parameters were different: a = 0.60 and ap = 0.80 for SIMPLE, M = 0.05 and 
x p  = 0.80 for SIMPLE + MG, x = 050 for MAC + MG, LY = 045 for PISO + MG and M = 0.25 
for DOT + MG. 

From Table 111 we can observe that SIMPLE + MG and PISO + MG are almost equivalent, 
MAC is slightly faster and DOT is the fastest to converge. 

5.3. '4 comparison among SIMPLE, MAC and DOT in compressibleflow 

The times and numbers of iterations to convergence obtained in quasi-incompressible 
compressible flow (i.e. when compressibility cannot be neglected but the Mach number is small) 
are reported in Tables Ill-VIII.  The Mach number range we consider is 0.01 (which is practically 
indistinguishable from incompressible flow) to 0.3, which is the value where more or less all the 
algorithms tested begin to fail to converge. Mach 0.3 is, at any rate, far beyond the maximum 
practically interesting value for combustion chambers. 

The optimum values of the relaxation parameters in these tests turned out to increase with 
Mach number for all methods. 

Tables 111, V and IV, VI show the relative times and numbers of iterations to convergence 
respectively for the methods SIMPLE, SIMPLE + MG, MAC + MG and DOT + MG in the 
case of the single-inflow geometry. We have not tested PISO + MG in compressible flow because 

Table 111. Time to convergence for the case of compressible flow at Reynolds number 30 in a 
single-inlet geometry 

SIMPLE SIMPLE + M G  MAC + M G  DOT + M G  
Mach 

number Time Time Ratio Time Ratio Time Ratio 

0.0 1 5'00" 1 ' 3 0  3.3 1'00" 5.0 4 4  6.8 
0.1 4' 1 3" 1'29" 3.2 1'00" 4.2 44" 5.7 
0.2 3'37" 1'27" 2.5 1'09" 3.1 42" 5.2 
0.3 3'38" 1'51" 2.0 1'37" 2.2 41" 4.6 
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Table IV.  Number of iterations to convergence for the case of compressible flow 
at Reynolds number 30 in a single-inlet geometry 

Mach 
number SIMPLE SIMPLE + M G  MAC + MG DOT + MG 

0.0 1 317 110 
0.1 261 109 
0.2 229 106 
0.3 23 1 135 

45 28 
45 28 
52 27 
75 30 

Table V. Time to convergence for the case of compressible flow at Reynolds number 100 in a 
single-inlet geometry 

SIMPLE SIMPLE + M G  MAC + MG DOT + MG 
Mach 

number Time Time Ratio Time Ratio Time Ratio 

0.0 I 7 '34  1'19" 5-7 1 ' 1 6  6.0 1 '00 7.6 
0. I 638" 1'18" 5- 1 1'16" 5.2 1 '00 6.6 
0.2 5'39" 1'14" 4-6 1 ' 1 4  4.6 55" 6.2 
0.3 4 3 4  1'46" 2.6 1'26" 3.1 Divergent 

Table VI. Number of iterations to convergence for the case of compressible flow 
at Reynolds number 100 in a single-inlet geometry 

Mach 
number SIMPLE SIMPLE + MG MAC + MG DOT + MG 

0.0 1 480 97 51 38 
0.1 42 1 96 56 38 
0.2 358 90 56 35 
0.3 290 129 65 Divergent 

Table VII. Time to convergence for the case of compressible flow at Reynolds number 100 in a 
double-inlet geometry 

SIMPLE SIMPLE + MG MAC + MG DOT + M G  
Mach 

number Time Time Ratio Time Ratio Time Ratio 

0.2 4'39" 58" 4.8 49" 5.7 43" 6.5 
0.3 4'32" 58" 4.7 48" 5.7 1'05" 4.2 
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Table VIII. Number of iterations to convergence for the case of compressible flow 
at Reynolds number 100 in a double-inlet geometry 

Mach 
number SIMPLE SIMPLE + MG MAC + MG DOT + MG 

0.2 295 71 37 27 
0.3 288 71 37 40 

it turned out less competitive than DOT and MAC in the previous test, despite being 
considerably more complicated then either. 

The analysis of Tables I l l  and V shows that the performance of all the methods gets worse 
with increasing Reynolds number. The reason is probably that the recirculation cell present 
inside the chamber grows bigger and bigger and eventually approaches the outflow section where 
incompatible boundary conditions are imposed. With increasing Mach number for a fixed 
Reynolds number all the methods initially get faster and then lose their efficiency. 

Tables VII and VIII show the relative times and numbers of iterations to convergence for the 
double-inflow geometry at a Reynolds number of 100 and Mach numbers of 0.2 and 0.3. This 
is a fairly tough test, with the values of the Reynolds and Mach numbers that in the single-inlet 
geometry appeared to provide the most severe conditions and a position of the inlet sections 
that, in order to have a fluid flow resembling as closely as possible the one occurring in a real 
combustion chamber, has been chosen so as to create a complex flow with three recirculation 
cells. As may be seen from Table VII, all three methods fitted with a multigrid pressure correction 
surpassed standard SIMPLE in this test by roughly a factor of five to six. DOT turned out best, 
albeit by a small margin, at a Mach number less than or equal to 0.2, but was more sensitive 
than the others to a further increase in Mach number. 

6. CONCLUSIONS 

The tests described in this paper appear to clearly indicate the potential of improving already 
existing industrial simulation programmes for quasi-incompressible flows, e.g. in combustion 
chambers, by retrofitting a multigrid pressure correction stage. The usually adopted velocity 
prediction with frozen pressure, which is common to the standard methods SIMPLE and MAC, 
to the newer P IS0  and to the DOT method proposed in this paper, can be coupled with a 
pressure correction that adopts multigrid in its interior in a hidden fashion, without requiring 
modifications to the remaining code. Such a strategy is suggested by the pressure correction 
being at the same time the most time-consuming phase of the procedure and that to which 
multigrid can be applied to the greatest advantage. 

Within the context of our tests of several otherwise standard methods, two new developments 
have been proposed: a simple modification of the restriction operation of the multigrid cycle 
which, at an absolutely negligible computational cost, changes the error reduction factor from 
1 : 3 to better than 1 : 10 per cycle (with Dirichlet boundary conditions; from 1 : 2 to 1 :5 with 
Neumann or mixed boundary conditions); and the method DOT, which, even though not by a 
large margin, achieved the smallest overall computation times among the ones tested. 

The time reduction obtainable by multigrid pressure correction cannot be stated, of course, 
without reference to a specific problem, and the results given in the previous section are quite 
diversified; nevertheless, it appears fair to say that in all cases where pressure correction absorbs a 
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significant fraction of the total time of computation the gain is definitely worthwhile. In the 
double-inlet geometry we tested with a 16 x 48 staggered computational grid, a factor of about 
five was gained with all multigrid-fitted methods. 
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